Percents

- Converting percents to fractions
$X \% \rightarrow \frac{X}{100} \quad$ Given: $x=20$
$20 \% \rightarrow \frac{20}{100}=\frac{1}{5}=\frac{2}{10}=\ldots$
(decimals)
- Converting fractions to percents
$\frac{1}{20}=0.05$ - 100 ("move the decimal 2 places to the right")

$$
\begin{aligned}
=5 \% & \rightarrow \frac{5}{100} \\
\frac{1}{20}=5 \%=\frac{5}{100} & \\
& \\
& \frac{1}{20}=\frac{5}{100} \quad \text {-factors } 5: 5 \text { is prime" } \\
5 \div 5 & =1 \\
100 \div 5 & =20
\end{aligned}
$$

- Reducing the fraction does not change the value, only the representation

$$
\begin{aligned}
& \frac{1}{20} \rightarrow \text { percent } \frac{1}{20}=\frac{n}{100} \\
& \frac{1}{20} \cdot \frac{5}{5}=\frac{n}{100} \\
& \frac{5}{100}=\frac{n}{100}=5 \%
\end{aligned}
$$

- Discounts / Sales tax (Equation)
6.5% sales tax B :Total bill $\$ 2.30$
\downarrow "rate" R
0.065 - base

$$
\begin{aligned}
& P=R \cdot B \\
& P=0.065 \cdot 2.30 \\
& P=\$ 0.1495 \\
& " 15 \text { cents" } \\
& \text { Total } \Rightarrow P+B \\
& \$ 2.45=\$ 0.15+\$ 2.30 \\
& P=R \cdot B
\end{aligned}
$$

Q:
What if R is missing
and we are given P and B ?

$$
P=R \cdot B
$$

$$
\begin{aligned}
& P=0.15 \quad R=? \\
& B=2.3
\end{aligned}
$$

$$
0.15=R \cdot 2.3
$$

$$
0.15=R(2.3)=2.3 R
$$

$$
\begin{array}{ll}
\frac{P}{B} \rightarrow \begin{array}{l}
0.15=R \cdot 2.3 \\
-6.5 \% \text { rate } \\
\\
\\
\frac{0.15}{2.3}=R=0.065 \\
\frac{P}{B}=R, R=\frac{P}{B} \\
\\
\\
\\
\\
\\
B=\frac{P}{R}
\end{array}
\end{array}
$$

